
Miguel Young de la Sota

(787) 548‐0156 / mcyoung@mit.edu

I’mMiguel, an engineering leader with a decade of industry experience, focusing on compilers, op‐
timization, and education. I believe that systems programming should be accessible, welcoming,
and useful, and I bring this philosophy to every aspect of my work. This means I am passionate
about mentorship, leadership, and growing the technical skills of others, and building software
tools that meet users where they are. My academic background is in mathematics; I have a BSc
in pure math from MIT.

Career Experience

Senior Principal Compiler Engineer, SambaNova Systems (2023–)

• Graph Compiler, Tech Lead. SambaNova is a silicon design company in the ML/HPC space. The graph
compiler is the high level component of its optimizing ML compiler, which focuses on floating‐point
optimization, loop refactoring, and some instruction scheduling.
The graph compiler team (and to a lesser extent, the compiler org) was lacking in outside experience
with compiler design. I was hired to build a more sustainable software engineering culture, particularly
to address velocity issues stemming from our compiler’s architecture. In a sense, the mission is to win
hearts and minds.
This role requiresmultiplexing the often incompatible goals of product readiness (enabling a particular

ML model) and building for velocity (making the compiler produce good output for all models). Other
teams frequently call for my advice on solving compiler design problems in a way that minimizes new
tech debt.
I am also driving the development of RW, a C++‐embedded language for writing linear algebra pro‐

grams on our hardware. This is a new frontend for our compiler drawing inspiration from SYCL, CUDA,
Fortran, and numpy. RW is a collaboration among many senior engineers: my role is to provide a co‐
herent strategic vision for our language and toolchain.
In addition, I have become the go‐to for most compiler engineers when it comes to complex and

subtle C++ or host‐side performance. I have startedmultiple active Slack channels for discussing linting,
C++, and software design, to encourage public discussion and foster collaboration and psychological
safety.
Key Accomplishments

– Developed new design review and code review practices for our team jointly with the team’s
manager, focusing on enabling inter‐IC collaboration.

– Helped start a weekly MLIR reading group for engineers to learn more about the framework our
compiler uses.

– Deployed project‐wide lint and formatting enforcement tools. Engineers throughout the org have
contributed dozens of lint rules.

– Lead the ”SnBase” refactoring project to extract critical‐but‐abandoned C++ utilities into a high‐
quality company standard library.

– Designed the novel programming model used by RW to express host‐side and accelerator‐side
computation and data motion, which focuses on predictable performance.

– Wrote almost all user documentation for RW, including slideware presented to VIP customers.
– Mentored several engineers throughout the job ladder on technical leadership, C++ best practices,
sustainable software architecture, unit testing, and compiler IR design.

– Built positive working relationships with the managers and tech leads of the other major compo‐
nents of our software stack.

– Contributed performance‐critical concurrency primitives and knowledge of the Clang and GCC
toolchains to help achieve customer‐visible performance numbers.



Senior Software Engineer, Google (2018–2023)

• Protobuf, Tech Lead. Protobuf is Google’s premiere evolvable schema language and data format, the
foundation for RPCs and data storage at Google. Small Protobuf improvements often result in major
company‐wide resource savings.
I joined the Protobuf team to lead the Editions project, an ambitious ecosystems‐wide effort to bring
incremental language evolution to Protobuf. I was responsible for the design and execution strategy,
as well as the org‐level OKRs.
I was simultaneously the lead for Protobuf Rust, a first‐party implementation of Protobuf for emerging

Rust users at Google. I was responsible for the delivery of an implementation that met our evolvability
and performance‐critical needs, as well as the technical growth of senior‐ and staff‐level contributors.
I also contributed optimizations and code health cleanups to our open‐source C++ project as spare

time allowed.
Key Accomplishments

– Led design of Protobuf Editions, which was reviewed and approved by all ecosystem stakeholders,
including Sanjay Ghemawat.

– Ramped up a staff engineer to handle tactical execution of the Editions roadmap.
– Defined norms and expectations for design contributions on Rust Protobuf, with a focus on psy‐
chological safety.

– Held daily Rust seminars for new senior contributors to learn advanced Rust concepts and tech‐
niques.

– Implemented and deployed a new JSON codec1 for Protobuf C++, including extensive tests and
bug‐compatibility. This codec is used by all Google production services that process JSON input
in C++.

– Refactored the core codegen utilities of protoc, improving compiler developers’ velocity.
– Designed and implemented Protoscope2 as a 20% time project. It is a simple, human‐editable
format for inspecting and modifying potentially invalid Protobuf wire format blobs. This tool is
used extensively by optimization engineers to debug wire format codecs.

– Participated in the on‐duty rotation, keeping CI green and answering user questions.

• OpenTitan, Software Engineer. The OpenTitan project is an open‐source root of trust SoC, consisting of
both silicon designs and firmware to run on the device. I responsible for our low‐level support libraries
and contributed significantly to our build system and cryptography libraries.
I was also responsible for the Manticore project, an implementation of Microsoft’s Cerberus attesta‐

tion protocol in Rust.
Key Accomplishments

– Migrated the entire project from ad‐hoc Make scripts to Meson; two years later, contributed a
significant portion of the migration from Meson to Bazel.

– Established a long‐term relationship with Microsoft senior staff engineers working on Cerberus,
including a mutually agreed‐upon RFC process for Cerberus.

– Unified our linker scripts and assembly files under one project style.
– Implemented andmaintained core libraries, such as C runtime support and optimizedmath utilities.
– Developed and implemented methodology for unit‐testing driver code off‐device.
– Designed fault‐injection and power analysis attack mitigation strategies for use in high‐assurance
privileged code; multiple patents were filed based on this work.

– Engaged with customer teams on cryptographic primitive requirements, balancing legacy use‐
cases with modern security practice.

– Provided technical mentorship for multiple new hires, including our cryptographer.
1https://github.com/protocolbuffers/protobuf/tree/main/src/google/protobuf/json
2https://github.com/protocolbuffers/protoscope

https://github.com/protocolbuffers/protobuf/tree/main/src/google/protobuf/json
https://github.com/protocolbuffers/protoscope


• 20%Work. In addition tomy assignedwork, I dedicated significant time to community efforts, primarily
focused around the theme of education.
Key Accomplishments

– Joined the admin group of C++ Readability, a mentorship program that teaches C++ best practices
to engineers via randomized code review. I also performed approximately 500 such mentorship
reviews.

– Taught multiple sessions of Comprehensive Rust3, a multi‐day Rust 101 course; student feedback
was overwhelmingly positive. I also organized initial development of a revised edition of the course
materials.

– Wrote entries for the C++ Tip of the Week best practices publication.
– Kicked off the Rust style guide working group, contributing strategic vision for Rust best pratices
at Google.

– Designedmoveit4 a novel move semantics library for Rust, bringing custommove operations to the
language. This design was adopted by Google’s Rust/C++ interop tooling for bridging C++ move
constructors to Rust.

Software TeamMember, Harvard–MIT Mathematics Tournament (2016–2017)

HMMT is a mathematics olympiad for attended by hundreds of high‐school students from around
the world. HMMT uses custom scheduling and scoring software that is critical to a smooth show.
I developed an Android app in Kotlin that provided teams and coaches with personalized sched‐

ules, directions, and notifications on tournament day. I also designed the REST API used by the
Android and iOS apps to communicate with HMMT’s services.

Lead Developer, Octagami’s Omniverse (2013–2016)

Octagami’s Omniverse was a small MMORPG with sandbox game aspects. We served over 500
simultaneous players and surpassing 250K unique users. Omniverse’s unified game world used a
distributed machend to overcome performance bottlenecks.
As the lead for server software development, I was responsible for the backend game server

architecture, which leveraged existing open‐source proxy technology. I also helped develop new
gameplay features, ensuring that they could scale to our player count while leveraging our archi‐
tecture. I was also responsible for JVM performance tuning of game server nodes.

Personal Projects

I maintain a personal blog atmcyoung.xyz, where I post long‐form explainers on advanced systems‐
programming topics, written for an intermediate‐level audience, with a focus on making the ma‐
terial accessible.
Most of my larger presonal projects are some kind of toolchain or programming language. Alkyne5
is a pure scripting language inspires by Starlark and Jsonnet, intended as a Starlark alternative;
snasm6 is a full Super Nintendo (MOS 65816) toolchain, including an assembler, a disassembler,
and a linker; jas7 is a JVM bytecode assembler.
Other smaller projects include 0x8, a binary dumper with colorization capabilities and an RPN
calculator, and voltorb9, a Picross‐like game with graphics and animations that runs inside of a
terminal.

3https://github.com/google/comprehensive-rust
4https://github.com/mcy/moveit
5https://github.com/mcy/alkyne
6https://github.com/mcy/snasm
7https://github.com/mcy/jas
8https://github.com/mcy/0x
9https://github.com/mcy/voltorb

https://mcyoung.xyz
https://github.com/google/comprehensive-rust
https://github.com/mcy/moveit
https://github.com/mcy/alkyne
https://github.com/mcy/snasm
https://github.com/mcy/jas
https://github.com/mcy/0x
https://github.com/mcy/voltorb

